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Endre Kovács and Zsolt Gulácsi
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Abstract
In the case of a two-leg Hubbard ladder we present a procedure which
allows the exact deduction of the ground state for the four-particle problem
in an arbitrary large lattice system, in a tractable manner, which involves
only a reduced Hilbert space region containing the ground state. In the
presented case, the method leads to nine analytic, linear and coupled equations
providing the ground state. The procedure which is also applicable to few
particle problems and other systems is based on an r-space representation of
the wavefunctions and construction of symmetry adapted orthogonal basis
wave vectors describing the Hilbert space region containing the ground
state. Once the ground state is deduced, a complete quantum-mechanical
characterization of the studied state can be given. Since the analytic structure
of the ground state becomes visible during the use of the method, it is
important not only to the understanding of theoretical aspects connected to
exact descriptions or potential numerical approximation scheme developments,
but is also relevant for a large number of potential technological application
possibilities placed between nano-devices and quantum calculations, where the
few particle behaviour and deep understanding are important key aspects.

PACS numbers: 71.10.Fd, 71.27.+a, 73.21.−b

1. Introduction

In condensed matter context, experiments or related theoretical interpretations we often
encounter a small number of particles confined in a system or device, for example, in the
case of quantum dots [1], quantum well structures [2], mesoscopic systems [3], experimental
entanglement [4], micro-crystals [5], cold gases trapped in optical lattices [6, 7], optical bound
states [8], segregation [9], interfacial stress and fracture [10], self-organized structures [11],
sintering [12], or compounds studied in the low concentration limit [13]. Such problems,
presenting both theoretical [14–17] and technological [9, 10, 12, 18–20] interests have
continuously attracted increasing attention. Starting from even one-electron problems solved
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exactly [17], several cases of interest for two [21–26], three [14, 15, 27–29], four [30–32]
or few [33–35] particles have been studied, concentrating on the model behaviour in the low
concentration limit, or motivated by experimentally measured characteristics. In this hierarchy
of the increasing number of carriers in the study of a given problem, the particle number four
(Np = 4) represents a special case, since it is close to the particle number limit around which
one can hope that deep rigorous descriptions can be made [36] even in the non-integrable
cases, the problem is also treatable from the numerical side as well [37], statistics and T �= 0
characterization can be given [38], and the problem retains even many-body aspects of the
system’s behaviour [39–41].

The simulations on the Np = 4 particle problem started more than a decade ago [37, 42],
but up to today, only few valuable results are known in this subject in the condensed matter
context, as follows. The energy dependence of the maximal Lyapunov exponent has been
studied for 1D Lenard–Jones system [43], the spinless fermion case has been analysed as
a simplified model for correlated electrons [30, 31], the conjecture of the Andreev–Lifshitz
supersolid has been studied [32], entangled states have been described in the high frequency
region [44], doped quantum well structures have been investigated [2], special cases where
only two pairs of particles interact on a lattice were considered [45], localization lengths have
been estimated in 1D disordered systems [3], and the behaviour in the presence of Coulomb
forces has been analysed [46]. As can be seen, the knowledge accumulated in this direction
is relatively poor. Approximated procedures have been applied under different conditions for
different systems of interest, but the level of exact characteristics has not been reached yet.

The need to study at exact level system holding Np = 4 particles is enhanced by several
motivations. First of all, Np = 4 is placed in the low-density limit, and as known, in this limit,
especially in low dimensions, no class of diagrams can be neglected in describing the system
[47]. Given by this difficulty, one often finds that traditional approximation schemes which
work at higher densities here fail [48] or provide unphysical results [49]. Secondly, we are
placed in the concentration limit where the formation of Fermi liquid properties can be studied
[30], and since this parameter region is usually numerically accessible, research with analytical
focus, starting from numerical results, also can be done. Thirdly, as several times have been
accentuated [50, 51], key aspects of the unapproximated descriptions are often hidden in
the few-particle cases. The four-particle case seems to be tractable also from this point of
view. Finally, in Np = 4 case we face a situation which experimentally is produced, having
potential application possibilities in several areas, as for example in the study of entangled
states [52], non-local character of quantum theory [53], high precision spectroscopy [54],
quantum communication, quantum cryptography, and quantum computation [55] fields where
deep and high quality results are clearly demanded [57].

Starting from the motivations presented above, we show in this paper that for the Np = 4
case, exact, analytical and explicit results holding essential information about the system
behaviour can indeed be provided, even for arbitrary large systems. To show this, we present
below the exact ground state for four interacting electrons placed in an arbitrary large two-leg
Hubbard ladder described by periodic boundary conditions. This is given in conditions for
which, even the known three (quantum-mechanical) particle exact results are very rare for
systems taken outside one dimension (see [29] and the references therein); hence we hope that
the presented results will generate creative advancements.

In order to obtain such results, a direct space representation is used for the wavefunctions.
Starting from local particle configurations, symmetry adapted ortho-normalized basis wave
vectors are constructed. Based on these, in the studied case, an explicit and analytic closed
system of nine equations is constructed, whose secular equation provides the ground-state
wavefunction and energy. Deducing the ground-state wavefunction for different microscopic
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parameters of the model, ground-state expectation values are calculated for different physical
quantities of interest, and correlation functions are deduced in order to characterize the ground-
state properties.

The method which is described here is in principle not model or particle number dependent,
and could be applied for other systems as well. In presenting our calculations, the aim was
not to hide the obtained results behind a numerical treatment or deduced symmetry properties,
(which certainly also can be done), but to show clear, visible and explicit properties which,
based on the provided essential characteristics, could enhance further creative thinking or
applications. In order to underline the importance of these aspects we note, for example, that
in recent studies made for states containing two to four particles, especially in attempts to
characterize the entanglement [52], or quantum dots [56], often the analysis must be made
without knowing the state completely [57]1. We show below how such ingredients, at least at
the level of the ground state, are possible to overcome.

The remaining part of the paper is structured as follows. Section 2 presents the
Hamiltonian, the deduction procedure and the ground-state wavefunctions. Section 3
exemplifies the physical properties of the ground state. Section 4 presents the summary
and conclusions of the paper, while appendices A and B presenting mathematical details close
the presentation.

2. Hamiltonian and ground-state wavefunctions

The strategy which we use for presentation is the following one. We have chosen a simple
model which allows us to characterize the construction of exact ground states in the presence
of four particles. After presenting the results we indicate how the procedure could be applied
for other systems as well.

2.1. Presentation of the Hamiltonian

The Hamiltonian we use for the presentation has the form of a standard two-leg Hubbard
ladder Hamiltonian

Ĥ = −t‖
∑

<i,j>‖,σ

(
ĉ
†
i,σ ĉj,σ + H.c.

) − t⊥
∑

<i,j>⊥,σ

(
ĉ
†
i,σ ĉj,σ + H.c.

)
+ U

∑
i

n̂i,↑n̂i,↓, (1)

where ĉ
†
i,σ creates an electron at site i with spin σ, tα holding the index α =‖,⊥ are nearest-

neighbour hopping amplitudes along and perpendicular to ladder legs, U is the on-site Coulomb
interaction and 〈i, j 〉α represents nearest-neighbour sites in α direction taken into account in
the sum over the lattice sites only once.

2.2. The construction of the basis wave vectors

If we would like to analyse by exact diagonalization the four-particle problem in the singlet
case in a two-leg Hubbard ladder containing N lattice sites, we must treat numerically a
Hilbert space of dH = [N(N − 1)/2]2 dimensions, where for example at N = 30 we have
dH = 2.16 × 105, and for N → ∞ one encounters dH → ∞ as dH ∼ N4.

We show below how it is possible to deduce exactly the ground state for a such type of
system in the case of an arbitrary large two-leg Hubbard ladder based on only nine linear and
analytic equations, and to extract essential information from the obtained results. In order to

1 We note that the here deduced ground states are entangled in the sense that cannot be factorized into a product of
single-particle wavefunctions, although the constituent particles are entirely distinct, see [52].
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Figure 1. The numbering of the lattice sites for the two-leg ladder taken with periodic boundary
conditions. N denoting the number of lattice sites is considered even. The t⊥(t‖) denotes the
inter-leg (intra-leg) hopping matrix element.

Figure 2. The different possible types of base vectors. We note that for the cases C, E i �= j ,
while for F, J j < k is considered. In the cases F, G,H, J , the double occupancy is forbidden.

do this, first we delimit exactly the Hilbert space region (Hg) containing the ground state by
the construction of nine types of orthogonal basis wave vectors spanning Hg . This procedure
is presented below.

2.2.1. The generating configurations. We are interested first to have an image about the
possible type of states of the studied four particles in the system under consideration. To
obtain such type of information, we number all lattice sites of the ladder as shown in figure 1
(periodic boundary conditions are considered). In the figure, N, considered even number,
denotes the number of sites within the system, while n = N/2 gives the number of rungs.
Using now an r-space representation, one observes that since the ladder legs, and the spin
reversed configurations are equivalent, the studied four particles can be placed into the system
only in nine possible ways, as depicted in figure 2. The presented possibilities, denoted by
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Figure 3. The structure of the |D2,3〉 base vector.

capital letters A to J , will provide nine types of basis wave vectors (denoted by the same
letters), whose construction is presented below. We mention that the subscripts i, j, k denote
particle positions within the considered states A to J presented in figure 2, which are such
chosen, to have the first particle position placed into the origin (e.g. lattice site 1). In the
following, the nine possible four-particle states presented in figure 2 will be called generating
configurations. How one arrives from the generating configuration X = A,B, . . . , J to the
base vector |X〉, is explained in the following two subsections.

2.2.2. The sum of configurations related to each generating configuration. Each generating
configuration provides other seven related configurations (brother configurations) of the same
type. These are obtained by (a) rotating the generating configuration by 180◦ along the
longitudinal symmetry axis of the ladder, (b) rotating the generating configuration by 180◦

along the symmetry axis perpendicular to the ladder, (c) rotating by 180◦ the configuration
obtained at (b) along the longitudinal symmetry axis of the ladder, and finally, (d) other
four related configurations are obtained by reversing all spin orientations in the generating
configuration and the configurations deduced at points (a)–(c). As an example, the eight
related configurations describing the state Di,j taken at i = 2, j = 3, are depicted in the first
column of figure 3.

After this step, since all lattice sites are equivalent, the different ‘related’ configurations
are translated by elementary translation N/2 times along the ladder, and all the contributions
are added. We obtain in this manner a sum of configurations for each generating configuration.
Such a sum contains 8 × N/2 components. For example, in the case of the D2,3 state, this
sum is presented in figure 3.

The procedure described above must be effectuated separately for each generating
configuration. As a result, we obtain at this point nine configuration sums. Each of these sums
will give rise to one basis wave vector as follows.

2.2.3. The basis wave vectors. A given configuration sum described in the previous
subsection provides one basis wave vector if each individual configuration of the sum is written
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in mathematical form via four creation operators acting on the bare vacuum. In order to do
this, we have to fix the order of creation operators for each type of contribution, which has been
done as follows. For two doubly occupied sites we write the creation operators of the couples
next to each other, first the spin up, then the spin down contribution, as ĉ

†
i,↑ĉ

†
i,↓ĉ

†
j,↑ĉ

†
j,↓|0〉,

where only the restriction i �= j exists. In the case of basis wave vectors containing only
one doubly occupied site at i one uses ĉ

†
i,↑ĉ

†
i,↓ĉ

†
j,↑ĉ

†
k,↓|0〉, where i �= j and i �= k must hold.

Finally, for cases without double occupancies, the convention ĉ
†
i,↑ĉ

†
j,↑ĉ

†
k,↓ĉ

†
l,↓|0〉 is considered,

where i < j and k < l must hold. Using these conventions, for example, in the case of |Di,j 〉,
taken at i = 2, j = 3 and depicted in figure 3 the result becomes

|D2,3〉 = ((
ĉ
†
1↑ĉ

†
1↓ĉ

†
2↑ĉ

†
(n+3)↓ + ĉ

†
2↑ĉ

†
2↓ĉ

†
3↑ĉ

†
(n+4)↓ + ĉ

†
3↑ĉ

†
3↓ĉ

†
4↑ĉ

†
(n+5)↓ + · · · )

+
(
ĉ
†
1↑ĉ

†
1↓ĉ

†
(n+3)↑ĉ

†
2↓ + ĉ

†
2↑ĉ

†
2↓ĉ

†
(n+4)↑ĉ

†
3↓ + ĉ

†
3↑ĉ

†
3↓ĉ

†
(n+5)↑ĉ

†
4↓ + · · · )

+
(
ĉ
†
(n+1)↑ĉ

†
(n+1)↓ĉ

†
(n+2)↑ĉ

†
3↓ + ĉ

†
(n+2)↑ĉ

†
(n+2)↓ĉ

†
(n+3)↑ĉ

†
4↓ + ĉ

†
(n+3)↑ĉ

†
(n+3)↓ĉ

†
(n+4)↑ĉ

†
5↓ + · · · )

+
(
ĉ
†
(n+1)↑ĉ

†
(n+1)↓ĉ

†
3↑ĉ

†
(n+2)↓ + ĉ

†
(n+2)↑ĉ

†
(n+2)↓ĉ

†
4↑ĉ

†
(n+3)↓ + ĉ

†
(n+3)↑ĉ

†
(n+3)↓ĉ

†
5↑ĉ

†
(n+4)↓ + · · · )

+
(
ĉ
†
3↑ĉ

†
3↓ĉ

†
2↑ĉ

†
(n+1)↓ + ĉ

†
4↑ĉ

†
4↓ĉ

†
3↑ĉ

†
(n+2)↓ + ĉ

†
5↑ĉ

†
5↓ĉ

†
4↑ĉ

†
(n+3)↓ + · · · )

+
(
ĉ
†
3↑ĉ

†
3↓ĉ

†
(n+1)↑ĉ

†
2↓ + ĉ

†
4↑ĉ

†
4↓ĉ

†
(n+2)↑ĉ

†
3↓ + ĉ

†
5↑ĉ

†
5↓ĉ

†
(n+3)↑ĉ

†
4↓ + · · · )

+
(
ĉ
†
(n+3)↑ĉ

†
(n+3)↓ĉ

†
(n+2)↑ĉ

†
1↓ + ĉ

†
(n+4)↑ĉ

†
(n+4)↓ĉ

†
(n+3)↑ĉ

†
2↓ + ĉ

†
(n+5)↑ĉ

†
(n+5)↓ĉ

†
(n+4)↑ĉ

†
3↓ + · · · )

+
(
ĉ
†
(n+3)↑ĉ

†
(n+3)↓ĉ

†
1↑ĉ

†
(n+2)↓ + ĉ

†
(n+4)↑ĉ

†
(n+4)↓ĉ

†
2↑ĉ

†
(n+3)↓

+ ĉ
†
(n+5)↑ĉ

†
(n+5)↓ĉ

†
3↑ĉ

†
(n+4)↓ + · · · ))|0〉

Similar procedure applies for all basis wave vectors. We mention that the so obtained basis
wavefunctions are orthogonal.

Here we must note that because of the fixed conventions presented above, sometimes
an additional negative sign arises in the process of writing the mathematical expression
corresponding to a basis wave vector component translated from the end to the beginning of
the ladder in the presence of the periodic boundary conditions. For example, if we translate
the vector ĉ

†
1,↑ĉ

†
N/2,↑ĉ

†
2,↓ĉ

†
3,↓|0〉 by an elementary translation along the ladder, according to the

fixed conventions one obtains ĉ
†
2,↑ĉ

†
1,↑ĉ

†
3,↓ĉ

†
4,↓|0〉 = −ĉ

†
1,↑ĉ

†
2,↑ĉ

†
3,↓ĉ

†
4,↓|0〉.

2.3. The ground-state wavefunction

After the calculation presented above, we are in the possession of nine types of orthogonal basis
wave vectors |Ai〉, |Bi〉, . . . , |Ji,j,k〉, enumerated together with their generating configuration
in figure 2. Let us denote these basis wave vectors by

∣∣O(m)
i,j,..

〉
,m = 1, 2, 3, . . . , 9. Now one

observes that by applying the Hamiltonian on a given
∣∣O(m)

i,j,..

〉
basis wave vector with fixed

m, we obtain the result inside the
{∣∣O(m)

i,j,..

〉}
set. Consequently, nine explicitly given analytic

linear equations form a closed system of equations, whose secular equation, by its minimum
eigenvalue, contains the ground state at attractive U. The nine equations are exemplified in
appendix A and are available in their complete extent in [58]. The ground-state nature of the
minimum energy eigenstate has been tested by exact numerical diagonalizations taken on the
full Hilbert space for different N values.

The fact that the analytic solution of the problem can be given in such a manner for
arbitrary large ladder length is connected to the observation that with increasing N, the type
of the particle configurations describing the system (see figure 2) remains unchanged. The
deduction of the ground state itself from the system of equations presented in appendix A must
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be numerically given2. Since the possible inter-particle distances (e.g. the possible values of
the i, j, . . . indices in O

(m)
i,j,... at fixed m) depend on the N value, the number of equations which

must be numerically treated depends on N in the frame of the same analytic expressions.
For example, for the m = 1 case we have 1 < i � 1 + N/4, for the m = 2 case we have
1 � i � 1 + N/4, etc. The number of obtained equations de is however significantly lower
than dH , the cg = dH /de ratio being at least of order 102 at intermediate N ∼ O(10) values.
Increasing N, cg further increases.

2.4. Application possibilities in other cases

In fact, the deduced system of equations, based on symmetry properties, delimitates from the
full Hilbert space a de dimensional space region, inside of which the ground state is placed.
The deduction of such a region is possible for other (non-disordered) models, and for other
particle numbers as well. In order to do this, we mention that if the lattice sites are equivalent,
the elementary translation of a particle configuration can, in principle, be given with a site-
independent multiplicative phase factor exp(iαtrans). Furthermore, the rotation of a particle
configuration along a symmetry axis can be given, in principle, with a multiplicative phase
factor of the form exp(iαrot), both αtrans, αrot providing their contributions in the basis wave
vectors3. In the described case, we have αtrans = αrot = 0, but in other cases, the energy can
be minimized in function of these parameters.

In deducing the linear system of equations describing Hg in a new case characterized by a
new Ĥ , one must start from a given basis wave vector (denoted by |v1〉, for example). This is
obtained from a generating particle configuration, which is translated and rotated as specified
above, all such obtained configurations being summed up. From technical reasons, the first
generating particle configuration must be such chosen to contain (for 1/2 spin fermions)
only double occupied sites placed in nearest-neighbour sites. Calculating now Ĥ |v1〉, the
result becomes a linear combination containing new base vectors |v2〉, . . . , |vn1〉, holding the
same symmetry properties, but being related to new generating configurations. Continuing
the procedure by calculating Ĥ |v2〉, |Ĥ |v3〉, etc, since periodic boundary conditions are used,
the linear system of equations closes up. It is even not important to know all distinct particle
configuration possibilities, since these are automatically generated by the Ĥ |vi〉 operation.

3. Ground-state properties

By diagonalizing the system of equations presented in appendix A and taking the minimum
energy solution, one finds the ground-state wavefunction |�g〉. Using this, the complete
quantum-mechanical characterization of the ground state can be given. In order to exemplify
the results, we present in (B.1), (B.2) explicit expressions containing the leading terms of
the ground-state wavefunction for two parameter values. Even appendix B shows that in the
leading terms of the ground-state wavefunction, the particles have the tendency to be placed in
pairs, the pairs tending to occupy the highest possible distance between them. This is reflected
as well in the density–density correlation function depicted in figure 4(c).

Ground-state expectation values and correlation functions are exemplified in figures
4 and 5, calculated for N = 28, e.g. ladder containing 14 rungs described by periodic
boundary conditions taken along the ladder. The correlation functions are defined as follows.

2 Such property is present also in the case of the Bethe Ansatz.
3 The αtrans and αrot angles can be connected to the momentum and angular momentum values in the ground state.
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Figure 4. The properties of the ground state for t⊥ = t‖. (a) The dependence of the energy
(in t‖ units) on u = U/t‖. The continuous line is the total energy, while the dots indicate the
potential energy. (b) The logarithm of the same-leg Ŝz–Ŝz correlation function for u = 0 (dots,
dot-dashed line), u = −10 (squares, long dashed line), u = −30 (diamonds, short dashed line),
u = −100 (stars, continuous line). (c) The same-leg density–density correlation function for
u = 0 (dots, dot-dashed line), u = −10 (squares, long dashed line), u = −30 (diamonds, short
dashed line), u = −100 (stars, continuous line).

The density–density correlation function has the expression

Cn(r) = 1

N

N∑
i=1

(〈n̂i n̂i+r〉 − 〈n̂i〉〈n̂i+r〉) (2)



Four electrons in a two-leg Hubbard ladder 10281

0 1 2 3 4 5 6 7
r

−0.02

0

0.02

0.04

0.06

0 1 2 3 4 5 6 7
r

−0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

0 1 2 3 4 5 6 7
r

0

0.0005

0.001

0.0015

0.002

(a)

(b)

(c)

Figure 5. Superconducting ground-state correlation functions. (a) The same-leg superconducting
s-wave correlation function for t⊥ = t‖ and u = 0 (dots, dot-dashed line), u = −10 (squares,
long dashed line), u = −30 (diamonds, short dashed line), u = −100 (stars, continuous line).
(b) The superconducting d-wave correlation function for t⊥ = t‖ and u = 0 (dots, dot-dashed line),
u = −10 (squares, long dashed line), u = −30 (diamonds, short dashed line), u = −100 (stars,
continuous line). We mention that the curves corresponding to the last two u values are almost
superposed. (c) Superconducting d-wave correlation function for u = −10 and t = t⊥/t‖ taken as
t = 1 (squares, dot-dashed line), t = 0.5 (triangles, short dashed line), t = 0.3 (X-s, long dashed
line), t = 0.01 (circles, continuous line).
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where n̂i = n̂i↑ + n̂i↓, n̂i,σ = ĉ
†
iσ ĉiσ . The spin correlations are studied via

CSz(r) = 1

N

N∑
i=1

(〈
Ŝz

i Ŝ
z
i+r

〉 − 〈
Ŝz

i

〉〈
Ŝz

i+r

〉)
, (3)

where Ŝz = (1/2)(n̂i,↑ − n̂i,↓). The superconducting pairing s-wave [59] correlation function
is

Csw(r) = 1

N

N∑
i=1

(〈
ĉ
†
i↑ĉ

†
i↓ĉ(i+r)↓ĉ(i+r)↑

〉 − 〈
ĉ
†
i↑ĉ(i+r)↑

〉〈
ĉ
†
i↓ĉ(i+r)↓

〉)
, (4)

and the superconducting pairing d-wave [60] correlations are studied via

Cdw(r) = 1

N

N∑
i=1

〈�̂†(i + r)�̂(i)〉 (5)

where �̂(i) = (ĉi2↓ĉi1↑ − ĉi2↑ĉi1↓). The i in �̂(i) denotes a rung connecting the lattice sites
i1, i2. The r values inside the figures are given in lattice constant units.

Figure 4(a) presents the ground-state energy and the potential energy in t‖ units in function
of u = |U/t‖| at t‖ = t⊥. Figure 4(b) shows that the spin–spin correlations are exponentially
decreasing, the decrease rate in the exp(−r/ξ) being of the form 1/ξ = 0.34 + 0.78

√|u|.
The density–density correlations depicted in figure 4(c) show that the particles tend to occupy
opposite positions in the ladder closed by periodic boundary conditions.

In figure 5 the behaviour of the superconducting correlation functions is presented. In
these plots u = U/t‖ holds. The correlations in figure 5 are decreasing with r, and for s-wave
case slightly increase by increasing the attractive U value. Figure 5(c) further shows that the
decrease of the inter-leg hopping amplitude at fixed on-site interaction is detrimental to d-wave
pairing correlations. Similar behaviour has been found also by others [59].

4. Summary and conclusions

We describe a procedure which allows the exact deduction of ground-state wavefunctions for
few particles in lattice models. The main result of our paper is that indeed, such a type of
analytic description can be made. In the case of an arbitrary large two-leg Hubbard ladder
taken with periodic boundary conditions and containing four electrons, presented in detail,
the method leads for the singlet state to nine analytic linear and coupled closed system of
equations, whose secular equation, through its minimum eigenvalue solution, provides the
ground-state wavefunction and ground-state energy. The procedure is based on an r-space
representation of the wavefunctions and properly constructed symmetry adapted orthogonal
basis wave vectors. These are obtained from generating particle configurations translated and
rotated in the lattice and finally added. The linear system of equations is obtained by applying
the Hamiltonian on the deduced basis wave vectors. The procedure can be applied for other
systems as well.

The fact that the analytic structure of the ground state becomes visible by the use of the
method underlines that the presented procedure contributes not only to the understanding of
theoretical aspects related to exact descriptions, or development possibilities of new numerical
approximation schemes, but also has implications on a broad spectrum of subfields related to
technological developments placed in between nano-devices and quantum computation, where
the exact knowledge of the behaviour of a small number of quantum-mechanical particles plays
a main role.
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Appendix A. The linear system of equations containing the ground state

This appendix presents the nine analytic equations describing the action of the Hamiltonian
on the basis wave vectors.

The first two equations are devoted to the |Ai〉, |Bi〉 species containing only (two) doubly
occupied sites.

Ĥ |Ai〉 = 2u|Ai〉 − t⊥|Di,i〉 − Ii>2|Ci−1,i〉 − Ii� n
2
|Ci,i+1〉,

Ĥ |Bi〉 = 2u|Bi〉 − t⊥Ii>1|Di,i〉 − Ii>1|Ei−1,i〉 − Ii� n
2
|Ei,i+1〉,

where IK = 1 if the statement K is true, and IK = 0 otherwise.
The following three equations describe the action of Ĥ on the basis wave vectors

containing only one doubly occupied site (|Ci,j 〉, |Di,j 〉, |Ei,j 〉) as follows

Ĥ |Ci,j 〉 = u|Ci,j 〉 − 4δj,i+1|Ai〉 − 4δj,i+1
(
1 + δi, n

2

)|Ai+1〉 − (1 − δi,2)|Ci−1,j 〉
− (

1 − δj,i+1 − δi,2δj, n+i
2 +1

)|Ci,j−1〉 − (
1 − δi,2δj, n+i

2
+ δj,n−i+1 − δj,n−i+2

)|Ci,j+1〉
− (1 − δj,i+1)(1 + δj,n−i+1 − δj,n−i+2)|Ci+1,j 〉
+ δi,2(1 + δj,3)

(
1 − δj, n+i

2
− δj, n+i

2 +1

)|C2,n−j+3〉

− t⊥|Di,j 〉 − t⊥ ·
{
Ij� n

2 +1|Dj,i〉
Ij> n

2 +1(1 − δj,n−i+2)|Dn−j+2,n−i+2〉
}

− (1 − δi,2)(1 + δj,i+1)|Fi−1,i,n−j+i+1〉

+

{
(1 − δi,2)(1 + δj,i+1)(1 − δi,3Ij� n+i+1

2
)|Fi,2,j 〉

−δi,3Ij> n+i+1
2

|Fi,2,n−j+i+1〉

}

− (1 + δj,i+1)(1 + δj,n−i+1 − δj,n−i+2)|Fi,i+1,n−j+i+1〉
+ (1 + δj,i+1)(1 + δj,n−i+1 − δj,n−i+2)

×
{

(1 − δi,2Ij� n+i
2
)|Fi+1,2,j+1〉

−δi,2Ij> n+i
2
|Fi+1,2,n−j+i+1〉

}
+ t⊥ ·

{
−Ij� n+i+1

2
|Gi,j,1〉

Ij> n+i+1
2

|Gi,n−j+i+1,i〉

}

+ t⊥(1 − δj,n−i+2) ·




Ij� n
2 +1 ·

{
Ij<2i−1|Gj,j−i+1,j 〉
−Ij�2i−1|Gj,i,1〉

}

Ij> n
2 +1 ·

{−Ij�2i−1|Gn−j+2,n−i+2,1〉
Ij>2i−1|Gn−j+2,n−j+i+1,n−j+2〉

}

 .

Ĥ |Di,j 〉 = u|Di,j 〉 − 4t⊥δj,i(|Ai〉 + |Bi〉)

− t⊥(1 − δj,1 − δj,i + δj,n−i+2) ·



Ij�n−i+2Ij<i(|Cj,i〉 + |Ej,i〉)
In−i+2�j>i(|Ci,j 〉 + |Ei,j 〉)
Ij>n−i+2(|Cn−j+2,n−i+2〉 + |En−j+2,n−i+2〉)




+

{−(1 − δi,2)|Di−1,j 〉
δi,2

(
1 − δj,1 − δj,2 − δj, n+i

2
− δj, n+i

2 +1

)|Di,n+i−j+1〉
}
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−
{

Ij>1
[
1 − δi,2

(
δj,2 + δj, n+i

2 +1

)
+ δi, n

2 +1δj,2
]|Di,j−1〉

δj,1
(
1 − δi, n

2 +1
)|Di,n〉

}

−
{[

1 − δi,2
(
δj,1 + δj, n+i

2

) − δj,n + δi, n
2 +1

(
δj, n

2
− δj, n

2 +1
)]|Di,j+1〉

δj,n|Di,1〉
}

−
{[

Ii< n
2

+ δi, n
2

(
Ij< n

2 +1 + δj,1 + 2δj, n
2 +1

)]|Di+1,j 〉(
δi, n

2
Ij> n

2 +1 + δi, n
2 +1(1 − δj,1 − δj,i)

)|Dn−i+1,n−j+2〉
}

− (1 − δi,2)

{
Ij�i |Gi−1,i,i−j+1〉
Ij>i |Gi−1,i,n−j+i+1〉

}

+




[
1 − δi,2 − δi,3

(
δj,2 + δj,3 + Ij> n

2 +1
)]|Gi,2,j 〉

−δi,3δj,3|Gi,2,1〉
−δi,3Ij> n

2 +2|Gi,2,n−j+i+1〉




+




(
1 − δi, n

2 +1
) {−Ij�i |Gi,i+1,i−j+1〉

−Ij>i |Gi,i+1,n+i−j+1〉
}

δi, n
2 +1I1<j< n

2 +1(1 − δn,4δj,2)|Gi,2,n−j+2〉




+




[
1 − δj,n − δi, n

2 +1 − δi,2
(
δj,1 + δj,2 + Ij� n

2 +1
)]|Gi+1,2,j+1〉

δj,n|Gi+1,2,1〉
−δi, n

2 +1I1<j< n
2 +1

∣∣Gn
2 , n

2 +1, n
2 +j

〉
−δi,2

{
δj,2|Gi+1,2,1〉
I n

2 +1<j<n|Gi+1,2,n+i−j+1〉
}




− t⊥ ·




I1<j<i |Hj,j,n−i+j+1〉
4δi,j |Hj,j,1〉
(Ii<j<n−i+2 + 2δj,n−i+2)|Hi,i,n−j+i+1〉
Ij>n−i+2|Hn−j+2,n−j+2,n+i−j+1〉




+ t⊥ ·



(I1<j<i + 4δj,i)|Jj,1,i〉
(1 − δj,i)(Ii<j<n−i+2 + 2δj,n−i+2)|Ji,1,j 〉
Ij>n−i+2|Jn−j+2,1,n−i+2〉


 .

Ĥ |Ei,j 〉 = u|Ei,j 〉 − 4δj,i+1
[
(1 + δi,1)|Bi〉 +

(
1 + δi, n

2

)|Bj 〉
]

− t⊥(1 − δi,1) ·
[
|Di,j 〉 +

{
Ij� n

2 +1|Dj,i〉
I n

2 +1<j<n−i+2|Dn−j+2,n−i+2〉
}]

−



[
1 − δi,1 + δi,2

(
δj, n

2 +1 − Ij> n
2 +1

)]|Ei−1,j 〉
δi,2Ij> n

2 +1|Ei−1,n−j+2〉
δi,1

(
1 + δj,2 − δj, n

2 +1
)|E2,n−j+2〉




− (1 − δj,i+1)|Ei,j−1〉 − (
1 + δj,n−i+1 − δj,n−i+2 + δi,1δj, n

2
− δi,1δj, n

2 +1
)|Ei,j+1〉

− (1 − δj,i+1)(1 + δj,n−i+1 − δj,n−i+2)|Ei+1,j 〉

+ t⊥(1 − δi,1) ·
{

−Ij� n+i+1
2

|Gi,j,1〉
Ij> n+i+1

2
|Gi,n−j+i+1,i〉

}

+ t⊥(1 − δi,1 − δj,n−i+2) ·




Ij� n
2 +1 ·

{
Ij<2i−1|Gj,j−i+1,j 〉
−Ij�2i−1|Gj,i,1〉

}

Ij> n
2 +1 ·

{−Ij�2i−1|Gn−j+2,n−i+2,1〉
Ij>2i−1|Gn−j+2,n−j+i+1,n−j+2〉

}
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+ (1 + δj,i+1) ·




Ii>2|Hi−1,n−j+i+1,i〉
δi,2|H1,2,n−j+i+1〉
δi,1 ·

{
2δj,2|H2,2,1〉
I n

2 +1>j>1|H2,2,n−j+3〉
}

 + [1 + δj,i+1(1 + 2δi,1)]|Hi,2,j 〉

+

{
Ii>1(1 + δj,i+1)(1 + δj,n−i+1 − δj,n−i+2)|Hi,n−j+i+1,i+1〉
δi,1

(
1 + δj,i+1 − δj, n

2 +1
)|H1,2,n−j+i+1〉

}
+ (1 + δj,i+1)(1 + δj,n−i+1 − δj,n−i+2)|Hi+1,2,j+1〉.

The last four equations devoted to the base vectors |Fi,j,k〉, |Gi,j,k〉, |Hi,j,k〉, |Ji,j,k〉 (not
containing doubly occupied sites) can be found in [58].

Appendix B. Exemplification for ground-state wavefunctions

We present below the leading terms of explicit ground-state wavefunctions deduced for
N = 28, at |U/t‖| = 3. The ground state |�g〉 is normalized to unity, and contains ortho-
normalized basis wave vectors.

For t⊥/t‖ = 0.8 one obtains for the ground-state wavefunction

|�g〉 = 0.181 883|E7,8〉 + 0.181 878|C7,8〉 + 0.175 769|D7,7〉 + 0.169 247|C6,7〉
+ 0.169 246|E6,7〉 + 0.157 289|D6,6〉 + 0.145 021|C5,6〉 + 0.145 004|E5,6〉
+ 0.138 346|D8,7〉 + 0.138 346|D7,8〉 + 0.128 723|D6,7〉 + 0.128 721|D7,6〉
+ 0.128 23|D5,5〉 + 0.111 346|C4,5〉 + 0.111 315|E4,5〉 + 0.110 256|D5,6〉
+ 0.110 239|D6,5〉 + 0.101 77|E6,8〉 + 0.101 761|C6,8〉 + 0.097 877|G7,8,1〉
− 0.097 8768|G8,2,8〉 + 0.093 1102|D7,9〉 + 0.091 3856|D4,4〉 − 0.091 0721|G7,2,7〉
+ 0.091 0714|G6,7,1〉 + 0.090 9671|C5,7〉 + 0.090 9645|E5,7〉 + 0.089 8481|D8,6〉
+ 0.089 8458|D6,8〉 + 0.084 5566|D4,5〉 + 0.084 4776|D5,4〉 + 0.080 2931|D5,7〉 + · · · ,

(B.1)

while for t⊥/t‖ = 0.1 one has

|�g〉 = 0.298 66|E7,8〉 + 0.293 65|E6,7〉 + 0.284 039|E5,6〉 + 0.270 726|E4,5〉
+ 0.255 311|E3,4〉 + 0.240 496|E2,3〉 + 0.230 556|E1,2〉 + 0.166 58|C7,8〉
+ 0.156 952|C6,7〉 + 0.149 053|E6,8〉 + 0.145 317|E5,7〉 + 0.139 42|E4,6〉
+ 0.137 923|C5,6〉 + 0.131 927|E3,5〉 + 0.123 835|E2,4〉 + 0.116 908|E1,3〉
+ 0.110 056|C4,5〉 + 0.081 715|C6,8〉 + 0.075 5983|E6,9〉 + 0.075 1106|H6,13,7〉
− 0.075 0843|H7,2,9〉 + 0.074 6358|C3,4〉 + 0.074 4796|C5,7〉 + 0.074 3108|E5,8〉
+ 0.074 0908|B7〉 − 0.073 841|H5,13,6〉 − 0.073 8214|H6,2,8〉 − 0.072 2444|B6〉
+ 0.071 8117|E4,7〉 − 0.071 3933|H5,2,7〉 − 0.071 3921|H4,13,5〉 + 0.069 3442|B5〉
+ · · · (B.2)
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